Skip to content

Analysis & Postprocessing

Postprocessing results

107 Topics 304 Posts
  • This topic is deleted!

    1
    0 Votes
    1 Posts
    1 Views
    No one has replied
  • Handling Large Field Data Results

    analysis memory acoustic
    8
    0 Votes
    8 Posts
    1k Views
    M
    Once you have whatever you need as a numpy array I suggest you use one of these functions to visualize it within Sim4Life import s4l_v1 as s4l import s4l_v1.document as document import s4l_v1.analysis as analysis import s4l_v1.model as model def visualizeArray(data, x=None,y=None,z=None, unit_name="", unit="", name="", scaling = 1.0, visualize_max = False, scalarrange = None, visualize_isosurface = False, debug = False): """ Create field in postpro to visualize data, if no axis provided then they are automatically assigned based on number of elements in data visualizeArray(data, x=None,y=None,z=None,unit_name="", unit="", name="", scaling = 0.001, goToMax = False) data - numpy array - 3D numpy array x - numpy array - 1D numpy array of x axis coordinates y - numpy array - 1D numpy array of y axis coordinates z - numpy array - 1D numpy array of z axis coordinates unit_name - string - unit name to be displayed unit - string - unit to be displayed name - string - name of field in postpro scaling - float - scaling factor for axes (default 0.001) goToMax - boolean - visualize slice field viewer of maximum in array visualize_slice scalarrange visualize_isosurface isosurface_value debug """ if x is None: x = np.arange(data.shape[0]+1)*.001 if y is None: y = np.arange(data.shape[1]+1)*.001 if z is None: z = np.arange(data.shape[2]+1)*.001 grid = analysis.core.RectilinearGrid() grid.XAxis = np.array(x)*scaling grid.YAxis = np.array(y)*scaling grid.ZAxis = np.array(z)*scaling field = analysis.core.DoubleFieldData() field.Grid = grid if data.size == (len(x) * len(y) * len(z)): field.ValueLocation = analysis.core.eValueLocation.kNode elif data.size == (len(x)-1) * (len(y)-1) * (len(z)-1): field.ValueLocation = analysis.core.eValueLocation.kCellCenter else: print "ERROR: Grid and Data don't match" return False field.NumberOfComponents = 1 field.NumberOfSnapshots = 1 field.Quantity.Unit = s4l.Unit(unit) field.Quantity.Name = unit_name # Note: memory layout is such that x is fastest, z slowest dimension values = data.ravel('F') values = values.astype(np.float64) field.SetField( 0, values ) assert field.Check() producer = analysis.core.TrivialProducer() if name != "": producer.Description = name producer.SetDataObject(field) if visualize_max: sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.XY sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.YZ sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.XZ sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) if visualize_isosurface: iso_surface_viewer = analysis.viewers.IsoSurfaceViewer() iso_surface_viewer.Inputs[0].Connect( producer.Outputs[0] ) iso_surface_viewer.Data.Mode = iso_surface_viewer.Data.Mode.enum.QuantityRealModulus #H CHECK - maybe should just use default (delete this line) iso_surface_viewer.Visualization.ScalarBarVisible = False iso_surface_viewer.UpdateAttributes() iso_surface_viewer.Update(0) document.AllAlgorithms.Add(iso_surface_viewer) document.AllAlgorithms.Add(producer) return producer def visualizeComplexArray(data, x=None,y=None,z=None, unit_name="", unit="", name="", scaling = 1.0, visualize_max = False, scalarrange = None, visualize_isosurface = False, debug = False): """ Create field in postpro to visualize data, if no axis provided then they are automatically assigned based on number of elements in data visualizeArray(data, x=None,y=None,z=None,unit_name="", unit="", name="", scaling = 0.001, goToMax = False) data - numpy array - 3D numpy array x - numpy array - 1D numpy array of x axis coordinates y - numpy array - 1D numpy array of y axis coordinates z - numpy array - 1D numpy array of z axis coordinates unit_name - string - unit name to be displayed unit - string - unit to be displayed name - string - name of field in postpro scaling - float - scaling factor for axes (default 0.001) goToMax - boolean - visualize slice field viewer of maximum in array visualize_slice scalarrange visualize_isosurface isosurface_value debug """ if x is None: x = np.arange(data.shape[0]+1)*.001 if y is None: y = np.arange(data.shape[1]+1)*.001 if z is None: z = np.arange(data.shape[2]+1)*.001 grid = analysis.core.RectilinearGrid() grid.XAxis = np.array(x)*scaling grid.YAxis = np.array(y)*scaling grid.ZAxis = np.array(z)*scaling field = analysis.core.ComplexDoubleFieldData() field.Grid = grid if data.size == (len(x) * len(y) * len(z)): field.ValueLocation = analysis.core.eValueLocation.kNode elif data.size == (len(x)-1) * (len(y)-1) * (len(z)-1): field.ValueLocation = analysis.core.eValueLocation.kCellCenter else: print "ERROR: Grid and Data don't match" return False field.NumberOfComponents = 1 field.NumberOfSnapshots = 1 field.Quantity.Unit = s4l.Unit(unit) field.Quantity.Name = unit_name # Note: memory layout is such that x is fastest, z slowest dimension values = data.ravel('F') #values = values.astype(np.complex64) field.SetField( 0, values ) assert field.Check() producer = analysis.core.TrivialProducer() if name != "": producer.Description = name producer.SetDataObject(field) if visualize_max: sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.XY sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.YZ sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) sfv.Slice.Plane = sfv.Slice.Plane.enum.XZ sfv.Update(0) sfv.GotoMaxSlice() sfv.Update(0) document.AllAlgorithms.Add(sfv) if visualize_isosurface: iso_surface_viewer = analysis.viewers.IsoSurfaceViewer() iso_surface_viewer.Inputs[0].Connect( producer.Outputs[0] ) iso_surface_viewer.Data.Mode = iso_surface_viewer.Data.Mode.enum.QuantityRealModulus #H CHECK - maybe should just use default (delete this line) iso_surface_viewer.Visualization.ScalarBarVisible = False iso_surface_viewer.UpdateAttributes() iso_surface_viewer.Update(0) document.AllAlgorithms.Add(iso_surface_viewer) document.AllAlgorithms.Add(producer) return producer def visualize2DArray(data, x=None,y=None,z=None, unit_name="", unit="", name="", scaling = 1., visualize_slice = False, scalarrange = None, visualize_isosurface = False, isosurface_value = None, debug = False): """ Create field in postpro to visualize data, if no axis provided then they are automatically assigned based on number of elements in data visualize2DArray(data, x=None,y=None,z=None, unit_name="", unit="", name="", scaling = 0.001, visualize = False, scalarrange = None) data - numpy array - 3D numpy array x - numpy array - 1D numpy array of x axis coordinates y - numpy array - 1D numpy array of y axis coordinates z - numpy array - 1D numpy array of z axis coordinates unit_name - string - unit name to be displayed unit - string - unit to be displayed name - string - name of field in postpro scaling - float - scaling factor for axes (default 0.001) visualize - bool - automatically extract field """ from numpy import newaxis # Deal with dimension of data if data.ndim == 2: data = data[:,:,newaxis] elif data.ndim < 2 or data.ndim > 3: print "Data Dimensions Error" return # Deal with scalar axis by turning into array if np.isscalar(x): x = [x] elif np.isscalar(y): y = [y] elif np.isscalar(z): z = [z] #If axes are not set, then make axes if x is None: x = np.arange(data.shape[0]+1)*.001 if y is None: y = np.arange(data.shape[1]+1)*.001 if z is None: z = np.arange(data.shape[2]+1)*.001 # Deal with monotonically decreasing axes if np.all(np.diff(x) < 0) and np.size(x) > 1: x = x[::-1] data = data[::-1] if debug == True: print "Warning: Monotonically decreasing x axes" if np.all(np.diff(y) < 0) and np.size(y) > 1: y = y[::-1] data = data[:,::-1] if debug == True: print "Warning: Monotonically decreasing y axes" if np.all(np.diff(z) < 0) and np.size(z) > 1: z = z[::-1] data = data[:,:,::-1] if debug == True: print "Warning: Monotonically decreasing z axes" grid = analysis.core.RectilinearGrid() grid.XAxis = np.array(x)*scaling grid.YAxis = np.array(y)*scaling grid.ZAxis = np.array(z)*scaling field = analysis.core.DoubleFieldData() field.Grid = grid if data.size == (len(x) * len(y) * len(z)): field.ValueLocation = analysis.core.eValueLocation.kNode elif data.size == (len(x)-1) * (len(y)-1) * (len(z)-1): field.ValueLocation = analysis.core.eValueLocation.kCellCenter else: print "ERROR: Grid and Data don't match" return field.NumberOfComponents = 1 field.NumberOfSnapshots = 1 field.Quantity.Unit = s4l.Unit(unit) field.Quantity.Name = unit_name # Note: memory layout is such that x is fastest, z slowest dimension values = data.ravel('F') values = values.astype(np.float64) field.SetField( 0, values ) assert field.Check() producer = analysis.core.TrivialProducer() if name != "": producer.Description = name producer.SetDataObject(field) # Adding a SliceSurfaceViewer if visualize_slice: sfv = analysis.viewers.SliceFieldViewer() sfv.Inputs[0].Connect( producer.Outputs[0] ) if len(x) == 1: sfv.Slice.Plane = sfv.Slice.Plane.enum.YZ elif len(y) == 1: sfv.Slice.Plane = sfv.Slice.Plane.enum.XZ elif len(z) == 1: sfv.Slice.Plane = sfv.Slice.Plane.enum.XY sfv.Visualization.ScalarBarVisible = False if scalarrange != None: sfv.ScalarRange = scalarrange sfv.Update(0) document.AllAlgorithms.Add(sfv) # Adding a IsoSurfaceViewer if visualize_isosurface: iso_surface_viewer = analysis.viewers.IsoSurfaceViewer() iso_surface_viewer.Inputs[0].Connect( producer.Outputs[0] ) if isosurface_value is not None: iso_surface_viewer.IsoValues = (isosurface_value,) iso_surface_viewer.Data.Mode = iso_surface_viewer.Data.Mode.enum.QuantityRealModulus #H CHECK - maybe should just use default (delete this line) iso_surface_viewer.Visualization.ScalarBarVisible = False iso_surface_viewer.UpdateAttributes() iso_surface_viewer.Update() if scalarrange != None: iso_surface_viewer.ScalarRange = scalarrange iso_surface_viewer.UpdateAttributes() iso_surface_viewer.Update() document.AllAlgorithms.Add(iso_surface_viewer) document.AllAlgorithms.Add(producer) return producer to use it then you would just need to do: visualize2DArray(my_data, x_axis, y_axis, z_coordinate) and then it should show up in the Postpro / Analysis tab for you to work this
  • 0 Votes
    2 Posts
    376 Views
    S
    Hi, Due to end user agreements, you cannot export phantom info in grids. According to one of the former entries in this forum, you may consider exporting D and E fields separately and divide them to find epsilon_complex. Similarly, exporting J- and E- fields to calculate conductivity (since J=sigma*E), may help. please be aware that this will not help for the tissue boundaries. You may cross check your computations from the it’is4.0 database loaded in Sim4Life. I hope this may help in your situation. Again, please make sure that you are not violating EULA by reconstructing these body models or sharing the data with third parties. Just keep your field results :) not the reconstructed body models.
  • export the data into Matlab... single Tx coil and combined coils for B1

    4
    0 Votes
    4 Posts
    633 Views
    S
    Hi I am not sure if these may help. to decrease simulation time (60hrs), you may consider healing the smallest grid. In my simulations, I have time steps usually around 1-3 ps. Anything below 1ps (time step) makes me to revise the model. Modeling cylindrical objects in cartesian coordinates may cause some geometric discrepancies. For example, assume you have a capacitor in one element, which has an only 0.1 mm offset compared to its mirrored counterpart. This means, although you have a capacitor size of a few millimeters, the minimum mesh size would be in the order of 0.05mm! This is terrible for a simulation at 298MHz. To avoid this, I usually model my elements in python environment. Rotating/translating elements manually (without proper snap options) may cause this problem. make sure that all channels have simulation results (I assume multiport simulation) other than that, (These errors may be due to missing simulation result, though) avoid using single port simulations, since you cannot change phases and export results after running a simulation.
  • 0 Votes
    2 Posts
    795 Views
    V
    Hello, Sorry but I am thinking of using a time-gate for my own experiment and wondered if you managed to get it working? Thanks
  • Combine ports in MATCH for shared matching/tuning network

    1
    0 Votes
    1 Posts
    210 Views
    No one has replied
  • How to switch between linear/log in 2D plot?

    2
    1 Votes
    2 Posts
    266 Views
    G
    For future reference: Okay I just found out that the unit for the y-axis must be set in the "Properties" window of the plot.
  • This topic is deleted!

    1
    0 Votes
    1 Posts
    2 Views
    No one has replied
  • Automatic Coil Tuning with the MATCH-Toolbox

    1
    0 Votes
    1 Posts
    186 Views
    No one has replied
  • Optimizer Disabled

    1
    0 Votes
    1 Posts
    176 Views
    No one has replied
  • Half Power Beam Width

    1
    0 Votes
    1 Posts
    184 Views
    No one has replied
  • 0 Votes
    5 Posts
    514 Views
    E
    So definitely max gain it is not useful for my purposes. I wanna construct a more symmetrical radiation pattern and maximize the gain in a certain direction. And of course, I would like to know which parameters I should set up to get such purposes.
  • I can't control the beam direction of circular array antenna

    1
    0 Votes
    1 Posts
    133 Views
    No one has replied
  • This topic is deleted!

    1
    0 Votes
    1 Posts
    14 Views
    No one has replied
  • Sincerely ask everyone

    1
    0 Votes
    1 Posts
    202 Views
    No one has replied
  • Sim4Life Light plot convergence level

    1
    0 Votes
    1 Posts
    204 Views
    No one has replied
  • Solve the problem that failed

    1
    0 Votes
    1 Posts
    177 Views
    No one has replied
  • The SIM4Life Light version deals with meshing during simulation

    1
    0 Votes
    1 Posts
    159 Views
    No one has replied
  • Amplitude modulation greater than the combined field

    2
    0 Votes
    2 Posts
    299 Views
    L
    Update: I manually summed the fields and got an answer that makes more sense (sum is always greater than amplitude modulation). I am not sure where it is going wrong when I am using the field combiner.
  • SetUp Field Crop Filter

    python
    2
    1 Votes
    2 Posts
    409 Views
    SylvainS
    In general, an easy way to create a postprocessing script is to first do it in the GUI and then use the "To-Python" function (available via right-click on the algorithm in the Explorer window). Here is what the auto-generated script looks like for a simple pipeline with a Crop Filter: # Creating the analysis pipeline # Adding a new SimulationExtractor simulation = document.AllSimulations["EM"] simulation_extractor = simulation.Results() # Adding a new EmSensorExtractor em_sensor_extractor = simulation_extractor["Overall Field"] em_sensor_extractor.FrequencySettings.ExtractedFrequency = u"All" em_sensor_extractor.Normalization.Normalize = True em_sensor_extractor.SurfaceCurrent.SurfaceResolution = 0.001, units.Meters document.AllAlgorithms.Add(em_sensor_extractor) # Adding a new FieldCropFilter inputs = [em_sensor_extractor.Outputs["EM E(x,y,z,f0)"]] field_crop_filter = analysis.core.FieldCropFilter(inputs=inputs) field_crop_filter.LowerExtent = numpy.array([1, 3, 2]) field_crop_filter.UpperExtent = numpy.array([21, 21, 21]) field_crop_filter.UpdateAttributes() document.AllAlgorithms.Add(field_crop_filter) Note fyi that you don't actually need to pass a Numpy array to UpperExtent or LowerExtent, it also works if you pass any iterable, like a list or a tuple.